

Slam Documentation

Slam is a simple command-line utility that makes it very easy to do serverless
deployments of Python web applications to AWS, using the Lambda [https://aws.amazon.com/lambda/] and API Gateway [https://aws.amazon.com/api-gateway/] services. In particular, Slam supports
the transparent deployment of WSGI [https://www.python.org/dev/peps/pep-3333/]
compliant applications.

	About Slam
	What is Serverless Computing?

	What are Lambda and API Gateway?

	How does Slam work?

	Alternatives to Slam

	Basic Tutorial
	Installing the Tutorial Project

	Configuration

	AWS Credentials

	Deployment

	Invoking your Lambda Function

	Cloudformation Template

	Deleting the Project

	Advanced Tutorial
	Installing the Tutorial Project

	Configuration

	AWS Credentials

	Deployment

	Publishing a Version

	Project Status

	Deleting the Project

	The End

	Command Reference
	slam

	slam init

	slam build

	slam deploy

	slam publish

	slam status

	slam invoke

	slam template

	slam logs

	slam delete

	Configuration Reference
	Core Options

	WSGI Plugin

	DynamoDB Plugin

	Plugin Development

About Slam

In this page you can find some background information on Slam and AWS.

What is Serverless Computing?

Modern clouds, such as AWS [https://aws.amazon.com], offer different ways to
host applications. At the least involved level, you can create server instances,
which are fully enabled virtual machines that run the operating system of your
choice and are connected to the Internet. Once you have an instance up, you can
login to it and install your software, exactly like you would on a local server.
In AWS, this is the Elastic Compute Cloud (EC2) [https://aws.amazon.com/ec2]
service.

Being able to work on virtual servers is nice, but the tendency is, however, to
move towards a model in which developers only need to concentrate on their
applications, leaving most or all of the installation and administration tasks
to the cloud operator. This is what serverless computing is about.

AWS provides a number of services that make the life of the application
developer easier. For example, it offers options for managed databases, message
queues, notifications, emails and so on. You as a developer have the option to
install your own stack on instances or containers, but if you want to spend all
your energy on your application, using the managed services offered by AWS makes
a lot of sense. And in addition to being convenient, these services have very
attractive pricing based on a “you only pay for what you use” model, so in
many cases you even end up saving money.

What are Lambda and API Gateway?

In AWS, Lambda [https://aws.amazon.com/lambda] is the function-as-a-service
(or FaaS) offering. With this service, you can upload your Python, Node.js,
Java or C# code, and Lambda will deploy it and run it for you when you need to.
To work with the Lambda service you upload your project’s code packaged as a zip
file, containing your application plus all its dependencies. You have to
designate a function in your code as the entry point, and this function will be
called by AWS when the Lambda function is invoked.

Because Lambda functions are supposed to be short lived, and are not
running constantly like a web server, there are some types of applications that
are not a good match for this service. In particular, any applications that rely
on a server maintaining a long lived connection with the client will not work
well. Examples of these applications are those that return live information as a
stream, or those that use long-polling or WebSocket to provide constant updates
to the client.

Deploying a web application to AWS Lambda also has its challenges. Web
applications expose their functionality as one or more HTTP services, so they
cannot directly work on the Lambda platform, since they rely servers that need
to be running constantly to receive client requests. The Amazon API Gateway [https://aws.amazon.com/api-gateway] service bridges this gap, by allowing you
to construct API endpoints, and configure what actions these endpoints trigger
when the client sends a request to them. The service takes care of scaling, rate
limiting, and even authentication if you want to offload that to the cloud too.
Among the available actions you can associate with an API Gateway endpoint,
there is invoking a Lambda function.

As you can probably guess, creating a web application on AWS Lambda and API
Gateway is substantially different than what Python web developers are used to
when creating their projects using Flask, Django or other web frameworks. The
goal of Slam is to allow you to continue developing your web applications in the
way you are used to, by automatically making your project compatible with the
AWS serverless paradigm.

How does Slam work?

Slam’s command-line utility allows you to package and deploy your Python web
application without having to make any changes to it. The idea is that you can
continue to develop your application locally, and deploy it to AWS with a single
command that takes care of the transformation required for the project to run
in the serverless environment.

For regular Python functions, Slam does very little besides creating a
self-contained package with your code and all of its dependencies. But for web
applications, Slam converts HTTP requests and responses between the API Gateway
and WSGI formats. When a request is received by API Gateway and passed on to the
Lambda function, this request is converted to the WSGI format and given to your
application, which is exactly what web servers such as gunicorn or uWSGI do. The
WSGI response from the application is then converted back to the API Gateway
format, before the Lambda function ends. Slam does all these conversions for
you, so your application does not need to be changed at all.

One of the nicest features of Slam is how it creates neat and tidy deployments
that are a pleasure to manage. For this, it relies on
Cloudformation [https://aws.amazon.com/cloudformation], the AWS
orchestration service. Slam uses the project configuration to generate a
Cloudformation template, and then runs this template to make changes on your
AWS account. The end result is that every single resource that is allocated
for your deployment is owned by the Cloudformation template, making it easy to
keep track of what resources are in use.

If you ever find the need to create a custom deployment that differs from the
standard structure used by Slam, it is possible to create plugins that extend
Slam’s Cloudformation template to suit different needs. In fact, a good part of
the functionality offered by Slam natively is written as plugins.

Alternatives to Slam

There are other serverless frameworks that create Lambda and API Gateway
deployments similar to Slam. If for any reason Slam does not work for you,
these may be good alternatives to research.

Chalice [https://github.com/awslabs/chalice] is an open-source framework from
AWS that uses a decorator-based syntax similar to Flask and Bottle to create
API Gateway and Lambda projects. The main disadvantage of Chalice compared to
Slam is that it is not built on top of WSGI, so a project based on this
framework cannot be run locally like you would with a standard WSGI application.

Zappa [https://www.zappa.io/] is another open-source framework that deploys
Python functions and APIs to AWS Lambda and API Gateway. It is more mature than
Slam, but overall similar. The main difference with Slam is that it invokes a
variety of AWS APIs directly during a deployment, instead of using
Cloudformation to orchestrate the deployment.

Basic Tutorial

In this section you will learn how to deploy a Python function to AWS using
Slam.

Installing the Tutorial Project

To do this tutorial, you need to download a small Python project that consists
of two files:

	fizzbuzz.py [https://github.com/miguelgrinberg/slam/raw/master/examples/fizzbuzz/fizzbuzz.py]

	requirements.txt [https://github.com/miguelgrinberg/slam/raw/master/examples/fizzbuzz/requirements.txt]

Download these two files by right-clicking on the links above and selecting
“Save link as...” to write them to your disk. Please put the files in a brand
new directory.

This project is a version of the popular Fizz Buzz coding exercise. To become
familiar with this application, you can run it as follows:

$ python3 fizzbuzz.py 2
2
$ python3 fizzbuzz.py 12
fizz
$ python3 fizzbuzz.py 15
fizz buzz
$ python3 fizzbuzz.py 5
buzz

If you prefer, you can also use Python 2.7 to run this function.

Configuration

To prepare to deploy this application to Lambda, begin by installing the Slam
utility with pip in a brand new virtual environment:

$ python3 -m venv venv
$. venv/bin/activate
(venv) $ pip install slam

This will add a slam command to your virtual environment. You can use
slam --help to see what are all the available options.

The slam init command can be used to create a starter configuration file:

(venv) $ slam init fizzbuzz:fizzbuzz
The configuration file for your project has been generated. Remember to add slam.yaml to source control.

The above command generates a slam.yaml configuration file, with some initial
settings. When you are working on a real project, you would want to add this
file to source control, along with your own files. As your project evolves, you
will hand edit this configuration file to make changes to your deployment.

The fizzbuzz:fizzbuzz argument tells Slam that the function is located in
a module named fizzbuzz (the one on the left of the colon), and that the
function that we want to deploy from that module is also named fizzbuzz
(the one on the right of the colon).

Note that up to this point your AWS account has not been touched. All that has
happened so far is configuration.

AWS Credentials

Slam expects AWS credentials for your account to be installed in your system. As
explained
here [http://docs.aws.amazon.com/cli/latest/topic/config-vars.html], there
are many possible sources of configuration, including environment variables or
credential files.

If you are familiar with how AWS stores credentials, then feel free to use your
preferred way. The following instructions use the AWS command-line utility to
store credentials in configuration files in your home directory.

To be able to access AWS service from the command line, you first need to set up
access keys on the AWS Console. If you are not familiar with AWS account
security, it is highly recommended that you read the AWS Security Credentials [http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html]
section of the AWS documentation.

Once you have obtained your access and secret keys on the AWS Console, you can
use the AWS command-line utility to store them in your system.

Install the AWS command-line utility with pip:

(venv) $ pip install awscli

Then use the aws configure command to enter your credentials. The command
will prompt you to type them one by one:

(venv) $ aws configure
AWS Access Key ID [None]:
AWS Secret Access Key [None]:
Default region name [None]:
Default output format [None]:

The first two prompts are for your access keys. For the third prompt you have to
pick one of the AWS regions. If you have no preference, use us-east-1, or
pick the region closest to where you are located. In the screencast above, the
us-west-2 region is used.

Deployment

With the AWS credentials installed, you can now proceed to deploy this project
to AWS with the slam deploy command:

(venv) $ slam deploy
Building lambda package...
Deploying fizzbuzz:dev...
fizzbuzz is deployed!
 Function name: fizzbuzz-Function-1CUMOX2834PA0
 S3 bucket: fizzbuzz-J5FTHI40
 Stages:
 dev:$LATEST

The deployment process will take between about a minute. After the command
finishes, you will have the function deployed and ready to be used!

The output from the deploy command indicates that the function was deployed
to a dev stage, and that its version is $LATEST. Do not worry about
this for this tutorial, stages and versioning will be covered in the second
tutorial.

Invoking your Lambda Function

The slam invoke command can be used to quickly test that the function
hosted on AWS Lambda. If you look at the code of the function, you’ll notice
that the input is an argument named number. Below you can see how to invoke
the function and pass a value for this argument using the invoke command:

(venv) $ slam invoke number:=2
2
(venv) $ slam invoke number:=12
fizz
(venv) $ slam invoke number:=15
fizz buzz
(venv) $ slam invoke number:=5
buzz

The invoke command needs to know the correct type of the arguments you are
passing to your function. For each argument, you have to include the name of
each argument and its value. For string arguments, you can use the
argument=value syntax. If the argument is not a string, use
argument:=value to have the argument intrepreted as JSON.

Cloudformation Template

The deployment that you just finished was done through Cloudformation, the
AWS orchestration service. If you are curious to see what resources were
created, you can go to the Cloudformation section of the AWS console and view
the stack that corresponds to this deployment.

You can also use the slam template command to view the Cloudformation
template that was used for the deployment.

Deleting the Project

A deployment orchestrated with Slam contains two high-level resources:

	A Cloudformation stack

	A S3 bucket with the Lambda zip file package inside

Every other resource allocated for the deployment is owned by the
Cloudformation stack, which is very convenient, as this prevents resources to
inadvertently be left behind or orphaned.

When you are done experimenting with this example project, you may want to
remove it from your AWS account. If you want to perform a manual delete, you
can just delete the Cloudformation stack and the S3 bucket, and that will leave
your account clean of this deployment.

As a convenience to users, there is a slam delete command that performs the
above two tasks for you:

(venv) $ slam delete
Deleting fizzbuzz...
Deleting logs...
Deleting files...

Congratulations! You have reached the end of this first tutorial. The second
tutorial covers more advanced usages that include the deployment of a REST API
project.

Advanced Tutorial

In this second tutorial you will learn how to deploy a Python API project with
Slam through a hands-on tutorial. In this tutorial you will use most features
of Slam, and will have a small Python API deployed to AWS Lambda and API
Gateway.

The screencast below is a recorded run through the entire tutorial. Feel free
to use it as a reference when you go through the steps yourself, but note that
it was created for an older release of Slam, so there are minor variations in
the commands used.

 Command Reference

Command Reference

slam

The command slam provides access to all the features of this package thorugh
subcommands. To find the list of available subcommands, use slam --help, and
to find options available to a specific subcommand, use
slam <subcommand> --help.

usage: slam [-h] [--config-file CONFIG_FILE]
 {init,build,deploy,publish,invoke,delete,status,logs,template} ...

positional arguments:
 {init,build,deploy,publish,invoke,delete,status,logs,template}
 init Generate a configuration file.
 build Build lambda package.
 deploy Deploy the project to the development stage.
 publish Publish a version of the project to a stage.
 invoke Invoke the lambda function.
 delete Delete the project.
 status Show deployment status for the project.
 logs Dump logs to the console.
 template Print the default Cloudformation deployment template.

optional arguments:
 -h, --help show this help message and exit
 --config-file CONFIG_FILE, -c CONFIG_FILE
 The slam configuration file. Defaults to slam.yaml.

Common arguments

The following command-line arguments are available to all subcommands, and when
given, must appear before the subcommand name:

	--config-file CONFIG_FILE or -c CONFIG_FILE

Specify a custom configuration file. If this option is not given, the
configuration is loaded from file slam.yaml in the current directory.

slam init

The slam init command creates a brand new configuration file.

usage: slam init [-h] [--name NAME] [--description DESCRIPTION]
 [--bucket BUCKET] [--timeout TIMEOUT] [--memory MEMORY]
 [--stages STAGES] [--requirements REQUIREMENTS]
 [--runtime RUNTIME] [--wsgi] [--no-api-gateway]
 [--dynamodb-tables DYNAMODB_TABLES]
 function

positional arguments:
 function The function or callable to deploy, in the format
 module:function.

optional arguments:
 -h, --help show this help message and exit
 --name NAME API name.
 --description DESCRIPTION
 Description of the API.
 --bucket BUCKET S3 bucket where lambda packages are stored.
 --timeout TIMEOUT The timeout for the lambda function in seconds.
 --memory MEMORY The memory allocation for the lambda function in
 megabytes.
 --stages STAGES Comma-separated list of stage environments to deploy.
 --requirements REQUIREMENTS
 The location of the project's requirements file.
 --runtime RUNTIME The Lambda runtime to use, such as python2.7 or
 python3.6
 --wsgi Treat the given function as a WSGI app.
 --no-api-gateway Do not deploy API Gateway.
 --dynamodb-tables DYNAMODB_TABLES
 Comma-separated list of table names to create for each
 stage.

Required arguments

	wsgi_app

A reference to the project’s WSGI application callable. This argument must be
in the format <module>:<app>, where module is the module or package
name where the WSGI application callable is located, and app is the
name of the variable that holds it.

Optional arguments

	--name NAME

The name of the project. If this argument is not given, the WSGI module is
used as the project name.

	--description DESCRIPTION

A short project description.

	--bucket BUCKET

The name of an S3 bucket to use as storage for Lambda packages. If this
argument is not given, the project name is used as bucket name.

	--timeout TIMEOUT

The timeout to configure on the Lambda function, in seconds. The default is
10 seconds.

	--memory MEMORY

The amount of memory to provision for the Lambda function, in megabytes. The
default is 128 MB.

	--stages STAGES

A comma-separated list of stage names to create as part of the deployment. If
this argument is not provided, a single stage named dev is created.

	--requirements REQUIREMENTS

The name of the Python requirements file that contains the project
dependencies. If this argument is not given, slam looks for a
requirements.txt file in the project’s root directory.

	--runtime RUNTIME

The name of the Lambda runtime to use for the function. This can be either
"python2.7" or "python3.6". If this argument is not provided, the
runtime is guessed from the version of python that is being used.

	--dynamodb-tables DYNAMODB_TABLES

A comma-separated list of DynamoDB table names to create for each stage. Once
these tables are created, they will be named using the format
<stage>.<table_name>, so that each stage has a unique table name.

Examples

$ slam init fizzbuzz:fizzbuzz --stages dev,prod
The configuration file for your project has been generated. Remember to add slam.yaml to source control.

$ slam init tasks_api:app --wsgi --stages dev,staging,prod --dynamodb-tables users,tasks
The configuration file for your project has been generated. Remember to add slam.yaml to source control.

slam build

The slam build command builds a Lambda package, without deploying it.

usage: slam build [-h] [--rebuild-deps]

optional arguments:
 -h, --help show this help message and exit
 --rebuild-deps Reinstall all dependencies.

Required arguments

None.

Optional arguments

	--rebuild-deps

To speed up the build process, this command reuses dependencies from a
previous build (installing any requirement changes on top). If this option
is given, old requirements are deleted and everything is installed from
scratch.

Example

$ slam build
lambda_package.20170112_143002.zip has been built successfully.

slam deploy

The slam deploy command deploys your project to a stage on AWS.

usage: slam deploy [-h] [--rebuild-deps] [--no-lambda]
 [--lambda-package LAMBDA_PACKAGE] [--stage STAGE]

optional arguments:
 -h, --help show this help message and exit
 --rebuild-deps Reinstall all dependencies.
 --no-lambda Do no deploy a new lambda.
 --lambda-package LAMBDA_PACKAGE
 Custom lambda zip package to deploy.
 --stage STAGE Stage to deploy to. Defaults to the stage designated
 as the development stage

Required arguments

None.

Optional arguments

	--rebuild-deps

To speed up the deployment process, this command reuses dependencies from a
previous deploy (installing any requirement changes on top). If this option
is given, old requirements are deleted and everything is installed from
scratch.

	--no-lambda

Skip a deployment of a new lambda package. This can be used when a deployment
has been updated, but the code has not. A typical example of when this is
convenient is when the configuration file is edited to add or remove stages
or database tables.

	--lambda-package LAMBDA_PACKAGE

Instead of building a new lambda package, use the one provided. The given
package must be a zip file in the format required by AWS Lambda. The zip
files produced by the slam build command can be used here.

	--stage STAGE

The stage that receives the updated Lambda function. By default this is the
stage that is marked as the development stage in the configuration. The stage
that receives the deployment will be updated to the latest version of the
Lambda function as part of the deployment.

Example

$ slam deploy
Building lambda package...
Deploying simple-api...
simple-api is deployed!
 Function name: simple-api-Function-1XARPP7W4H3KR
 Stages:
 dev:$LATEST: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/dev
 prod:31: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/prod
 staging:30: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/staging

slam publish

The slam publish command makes a version of your project available on a
stage with a persistent version number.

usage: slam publish [-h] [--version VERSION] stage

positional arguments:
 stage Stage to publish to.

optional arguments:
 -h, --help show this help message and exit
 --version VERSION Stage name or numeric version to publish. Defaults to the
 development stage.

Required arguments

	stage

The stage that receives the published version of the project.

Optional arguments

	--version VERSION

Publish a specific Lambda version. The given version can be a number, or a
stage name. When a stage name is given, the version of the project stored in
that stage is published.

Examples

Assuming a project that has three stages named dev, staging and
prod, new code versions in the dev stage can be published to
staging with this command:

$ slam publish staging
Publishing simple-api:dev to staging...
simple-api is deployed!
 Function name: simple-api-Function-1XARPP7W4H3KR
 Stages:
 dev:$LATEST: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/dev
 prod:1: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/prod
 staging:2: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/staging

Later a version running on staging can be published to prod with:

$ slam publish prod --version staging
Publishing simple-api:staging to prod...
simple-api is deployed!
 Function name: simple-api-Function-1XARPP7W4H3KR
 Stages:
 dev:$LATEST: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/dev
 prod:2: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/prod
 staging:2: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/staging

slam status

The slam status command shows the current deployment status of your
project.

usage: slam status [-h]

optional arguments:
 -h, --help show this help message and exit

Required arguments

None.

Optional arguments

None.

Example

$ slam status
simple-api is deployed!
 Function name: simple-api-Function-1XARPP7W4H3KR
 Stages:
 dev:$LATEST: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/dev
 prod:4: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/prod
 staging:3: https://ukhhy78b6a.execute-api.us-west-2.amazonaws.com/staging

slam invoke

The slam invoke command invokes the Lambda function.

usage: slam invoke [-h] [--stage STAGE] [--async] [--dry-run]
 [args [args ...]]

positional arguments:
 args Input arguments for the function. Use arg=value for strings,
 or arg:=value for integer, booleans or JSON structures.

optional arguments:
 -h, --help show this help message and exit
 --stage STAGE Stage of the invoked function. Defaults to the development
 stage
 --async Invoke the function but don't wait for it to return.
 --dry-run Just check that the function can be invoked.

Required arguments

None.

Optional arguments

	--stage STAGE

The stage on which to run the function. Defaults to the development stage.

	--async

Invoke the function, but don’t wait for it to run.

	--dry-run

Do not invoke the function, just check that the current user is allowed to
invoke it.

	args [args ...]

Input arguments to pass to the function. To pass a string argument, use
argument=value. To pass a non-string argument, use argument:=value,
where value is a number, boolean (true or false) or raw JSON
string.

Example

$ slam invoke number:=15
fizzbuzz

$ slam invoke name=john age:=34
OK

slam template

The slam template command dumps the slam Cloudformation template to the
console.

usage: slam template [-h]

optional arguments:
 -h, --help show this help message and exit

Required arguments

None.

Optional arguments

None.

Example

$ slam template
<template output dumped to the console>

slam logs

The slam logs command dumps logs to the console.

usage: slam logs [-h] [--stage STAGE] [--period PERIOD] [--tail]

optional arguments:
 -h, --help show this help message and exit
 --stage STAGE Stage to show logs for. Defaults to the stage
 designated as the development stage
 --period PERIOD, -p PERIOD
 How far back to start, in weeks (1w), days (2d), hours
 (3h), minutes (4m) or seconds (5s). Default is 1m.
 --tail, -t Tail the log stream

Required arguments

None.

Optional arguments

	--stage STAGE

The stage to dump logs for.

	--period PERIOD

How far back to start the log listing. The period can be given in weeks (1w),
days (2d), hours (3h), minutes (4m) or seconds (5s). The default is 1 minute.

	--tail

Dump new logs as they appear.

Example

$ slam logs
<log output dumped to the console>

slam delete

The slam delete command completely removes a deployment from AWS.

usage: slam delete [-h] [--no-logs]

optional arguments:
 -h, --help show this help message and exit
 --no-logs Do not delete logs.

Required arguments

None.

Optional arguments

	--no-logs

Do not delete the project logs.

Example

$ slam delete
Deleting api...
Deleting logs...
Deleting files...

 Configuration Reference

Configuration Reference

This section enumerates all the options that can be provided in the slam.yaml
configuration file.

Core Options

	name

The name of the project.

	description

A description for the project.

	function

Options that describe the function that is being deployed.

	module

The Python module or package that contains the application callable.

	app

The name of the function or callable to invoke.

	requirements

The project’s requirements filename.

	devstage

The name of the stage designated as the development stage.

	environment

A collection of variables, specified as key-value pairs, that are made
available to the Lambda function as environment variables.

Example:

environment:
 IN_LAMBDA: "1"
 ADMIN_URL: "1.2.3.4"

	stage_environments

A collection of stages. Each stage contains a collection of variables, given
as key-value pairs. These variables are exposed as environment variables to
the Lambda function when running on the stage.

Example:

stage_environments:
 dev:
 DEBUG: "1"
 prod:
 DEBUG: "0"

Note: When using multiple stages, it is important to that any stage variables
defined in this section are given values for all stages. This is necessary
because sometimes AWS reuses Lambda containers, so environment variables from
a previous invocation on a different stage may still exist.

	aws

A collection of settings specific to AWS.

	s3_bucket

The bucket on S3 where Lambda packages are to be stored. If this bucket does
not exist, it is created during the deployment.

	lambda_timeout

The timeout, in seconds, for the Lambda function.

	lambda_memory

The memory size, in megabytes, for the Lambda function.

	lambda_security_groups

If the Lambda function needs to access resources inside a VPC, this entry
must contain the list of security groups for the function to use. When VPC
access is not desired, this entry must be left blank.

	lambda_subnet_ids

If the Lambda function needs to access resources inside a VPC, this entry
must contain the list of subnet IDs in that VPC that have to be connected
to the function. When VPC access is not desired, this entry must be left
blank.

	lambda_managed_policies

This entry can define additional managed policies to be assigned to the
Lambda function execution role. These can be AWS managed policies (you can
provide just the policy name, such as AWSLambdaDynamoDBExecutionRole),
or custom managed policies, for which you must provide the fully qualified
ARN.

	lambda_inline_policies

This entry can define additonal inline policies to be assigned to the
Lambda function execution role.

	cfn_resources

A list of additional Cloudformation resources to add to the deployment.

	cfn_outputs

A list of additional Cloudformation outputs to add to the deployment.

WSGI Plugin

	wsgi

If this configuration option exists, the project is assumed to be a web
application compliant with the WSGI protocol. The values under the
function option (described above) are assumed to be of the WSGI callable.

The following options provide more details on how the WSGI deployment should
be configured:

	deploy_api_gateway

If set to true (the default), an API Gateway resource is created to map
to the Lambda function, so that HTTP requests can be made transparently. If
set to false, no API Gateway resources are deployed.

	log_stages

A list of stages that are configured to include API Gateway logging. For
included stages, API Gateway will produce detailed logging. For stages not
included, logging will only be produced for errors. This option is only
meaningful when deploy_api_gateway is set to true.

DynamoDB Plugin

	dynamodb_tables

A collection of DynamoDB tables to create for each stage. Each table entry
is defined by the table name, and contains a sub-collection of settings that
define the table schema.

Tables created by this plugin have a name with the format stage.name, so for
example, for a project that defines dev and prod stages, a table named
mytable in the configuration will result in DynamoDB tables
dev.mytable and prod.mytable created.

	attributes

A collection of attributes, as key-value pairs where the key is the
attribute name, and the value is the attribute type. Attribute types are
defined by DynamoDB and can be "S" for string, "N" for number,
"B" for binary, and "BOOL" for boolean.

	key

The name of the attribute that is the table’s hash key, or a list of two
elements with the attributes that are the table’s hash and range keys.

	read_throughput

The read throughput units for the table.

	write_throughput

The write throughput units for the table.

	local_secondary_indexes

A collection of local secondary indexes to define for the table. The
indexes are defined by their name, and contain a sub-collection that
specifies their structure.

	key

Same as the table-level key attribute. For a local secondary index,
the hash key must match the key selected for the table-level index.

	project

The attributes to project on this index. If set to "all" all table
attributes are projected. Else it can be set to a list of attribute
names to project, or to an empty list to only project the key
attributes.

	global_secondary_indexes

A collection of global secondary indexes to define for the table. The
indexes are defined by their name, and contain a sub-collection that
specifies their structure.

	key

Same as the table-level key attribute.

	project

The attributes to project on this index. If set to "all" all table
attributes are projected. Else it can be set to a list of attribute
names to project, or to an empty list to only project the key
attributes.

	read_throughput

The read throughput units for the index.

	write_throughput

The write throughput units for the index.

Example:

dynamodb_tables:
 # a simple table with "id" as hash key
 mytable:
 attributes:
 id: "S"
 key: "id"
 read_throughput: 1
 write_throughput: 1

 # a more complex table with hash/sort keys and secondary indexes
 mytable2:
 attributes:
 id: "S"
 name: "S"
 age: "N"
 key: ["id", "name"]
 read_throughput: 1
 write_throughput: 1
 local_secondary_indexes:
 myindex:
 key: ["id", "age"]
 project: ["name"]
 global_secondary_indexes:
 myindex2:
 key: ["age", "name"]
 project: "all"
 read_throughput: 1
 write_throughput: 1

 Plugin Development

Plugin Development

Coming soon!

 Index

Index

_static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/slam.png

nav.xhtml

 Table of Contents

 		Slam Documentation

 		About Slam

 		What is Serverless Computing?

 		What are Lambda and API Gateway?

 		How does Slam work?

 		Alternatives to Slam

 		Basic Tutorial

 		Installing the Tutorial Project

 		Configuration

 		AWS Credentials

 		Deployment

 		Invoking your Lambda Function

 		Cloudformation Template

 		Deleting the Project

 		Advanced Tutorial

 		Installing the Tutorial Project

 		Configuration

 		AWS Credentials

 		Deployment

 		Publishing a Version

 		Project Status

 		Deleting the Project

 		The End

 		Command Reference

 		slam

 		Common arguments

 		slam init

 		Required arguments

 		Optional arguments

 		Examples

 		slam build

 		Required arguments

 		Optional arguments

 		Example

 		slam deploy

 		Required arguments

 		Optional arguments

 		Example

 		slam publish

 		Required arguments

 		Optional arguments

 		Examples

 		slam status

 		Required arguments

 		Optional arguments

 		Example

 		slam invoke

 		Required arguments

 		Optional arguments

 		Example

 		slam template

 		Required arguments

 		Optional arguments

 		Example

 		slam logs

 		Required arguments

 		Optional arguments

 		Example

 		slam delete

 		Required arguments

 		Optional arguments

 		Example

 		Configuration Reference

 		Core Optio